

COLLEGE: COLLEGE OF ENGINEERING, SCIENCE & TECHNOLOGY (CEST)

SCHOOL: SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING

PROGRAMME: CERTIFICATE IV IN ELECTRICAL ENGINEERING-STAGE 3

UNIT CODE: EEE391

TITLE: ELECTRICAL PRINCIPLES (TRADE) 2

FINAL EXAMINATION — PENSTER 5, 2015

ROOM: AS PER TIMETABLE TIME: 2 HOURS & 10 MINUTES

INSTRUCTIONS TO STUDENTS'

- 1. You are allowed 10 minutes Extra reading time during which you are NOT to write.
- 2. Begin each answer on a fresh page and use both sides of the sheet.
- 3. Write your candidate-number at the top of each attached sheet
- 4. Insert all written foolscaps, graph paper, drawing paper, etc. in their correct sequence and secure with string
- 5. For all sheets of paper on which rough/draft work has been done, cross it though and you MUST ATTACH to your answer scripts.
- 6. Write clearly the number(s) of the question(s) attempted on the top of each sheet.
- 7. ANSWER ALL QUESTIONS.
- 8. Show all workings where necessary.
- 9. Do not use programmable calculators, especially the ones that do the conversions of number systems.
- 10. ALWAYS CHECK YOUR WORK BEFORE YOU LEAVE THE ROOM!

- 7. An aluminium pan of mass 0.5 kg containing 0.75 kg of water is heated from 20^oC to 100^oC. How much heat energy has been received by the pan and its contents? Note the specific heat capacity (in J/Kg.K) for aluminium is 900 and water is 4180.(3 marks)
- 8. A circuit with inductance value of 0.15 henry, resistance value of 25Ω and capacitance value of $100\mu F$ is connected to a 240 volt, 50Hz supply. Determine the impedance of the circuit, the current flowing and the phase angle. (5 marks)

SECTION B [25 MARKS]

1. List down two causes of low power factor. (3 marks)

- 2. A system running at a low power factor increases the current, which in turn leads to other disadvantages. Give two methods to improve power factor. (3 marks)
- 3. A single phase motor draws 2.7A on 240 V and a wattmeter in the circuit reads 486 W. Find the power factor. (4 marks)
- 4. Give one danger if resonance occurs in electrical installation. (2 marks)
- 5. What are the two major characteristics of the series resonant circuit? (2 marks)
- 6. True Power, apparent power and reactive power can be represented by a power triangle.

 Draw and label the power triangle. (5 marks)
- 7. Find the capacitive reactance of an 8µF capacitor and the current flowing when it is connected to a 100V 50 Hz supply. If it is then connected in series with another capacitor of the same capacity, find the new current flowing. (6 marks).

<u>SECTION C</u> [25 MARKS]

- 1. Give three advantages of a three phase system over single-phase. (3 marks)
- 2. Draw the phasor diagram for a three phase system. ' (3 marks)
- 3. Name the two types of three-phase connection in a three-phase system? (2 marks)
- 4. Compare between star and delta systems in terms of the following:

1) V _L		(2 marks)
ii) I _L	,	(2 marks)
iii) suitability of their usage		(2 marks)

iii) suitability of their usage (2 marks)

EEE 391 ELECTRICAL PRINICPLES (TRADE) 2 [2

5.	When is the loading on three-phase system said to be balanced?	(2 marks)	
6.	Three-coil each having a resistance of 28Ω and an inductive reactance of 35Ω are connected in delta to a 415V, 3 phase supply. Determine:		
	a) Phase current	(3 marks)	
	b) Line current	(2 marks)	
	c) Power factor	(2 marks)	
	d) Total power	(2 marks)	
SECT	ION D	[25 MARKS]	
1.	Three identical Coils, each with resistance of 15Ω and inductance of 52mH are connected in Star to 415 volts, 50Hz , three phase supply. Calculate the following:		
	a). Inductive Reactance of each coil	(2 marks)	
	b). Impedance of each phase	(2 marks)	
	c). Phase current	(2 marks)	
	d). Line current	(2 marks)	
,	e). Power	(3 marks)	
2.	The field windings of a generator have a resistance of 125Ω at a temperature What will be the resistance of the windings when the machine temperature load to 60° C.Note: The temperature coefficient of copper is 0.00427.		
3.	An alternating voltage is represented by the expression $v = 35 \sin 314.2t$ volt. Determine:		
	a). the maximum value	(2 marks)	
	b). the frequency	(2 marks)	
	c). the period of the waveform	(2 marks)	
	d). the value 3.5ms after it passes through zero, going positive	(3 marks).	
****	**************************************	*****	